<!-- JSON-LD markup generated by Google Structured Data Markup Helper. --><script type="application/ld+json">[ {  "@context" : "http://schema.org",  "@type" : "Article",  "name" : "Artificial Intelligence: Deep Learning",  "author" : {    "@type" : "Person",    "name" : "Dean Anthony Gratton"  },  "image" : "https://global-uploads.webflow.com/5ef788f07804fb7d78a4127a/5f6cf8c096e2c68ef5959a83_ai-deep-learning.png",  "articleSection" : "What’s the difference between machine and deep learning?",  "articleBody" : "Well, both terms are subsets of artificial intelligence (AI), although deep learning is a subset of machine learning. But more about this later...",  "publisher" : {    "@type" : "Organization",    "name" : "Engati"  }}, {  "@context" : "http://schema.org",  "@type" : "Article",  "name" : "Artificial Intelligence: Deep Learning",  "author" : {    "@type" : "Person",    "name" : "Dean Anthony Gratton"  },  "image" : "https://global-uploads.webflow.com/5ef788f07804fb7d78a4127a/5f6cf8c096e2c68ef5959a83_ai-deep-learning.png",  "articleSection" : "Software or algorithms must remain adaptive",  "articleBody" : "human intervention is required to correct or possibly resolve the open issue. On the other hand, deep learning will work through, with the use of better algorithms and “training” datasets, which it has acquired over a period to systematically resolve any issues without the need for human intervention.",  "publisher" : {    "@type" : "Organization",    "name" : "Engati"  }} ]</script>

Tech Corner

Artificial Intelligence: Deep Learning

Dean Anthony Gratton
.
Sep 25
.
3-4 mins

Table of contents

Key takeawaysCollaboration platforms are essential to the new way of workingEmployees prefer engati over emailEmployees play a growing part in software purchasing decisionsThe future of work is collaborativeMethodology

When tackling subjects related to Artificial Intelligence and Machine Learning, a term that frequently pops up is “Deep Learning.” I suppose one obvious question would be “What’s the difference between machine and deep learning?” Well, both terms are subsets of artificial intelligence (AI), although deep learning is a subset of machine learning. But more about this later...

Developing our empathic agent

In the meantime, let’s touch upon machine learning so as to re-establish what we have already understood and, that is, Machine Learning is a broad field of study, where the development of software (a computer program) automatically improves through experience, based on the data that it has received.  

We nowadays associate the term with “big data,” “data modelling” or “data science,” where retailers, for example, like to collect information about your shopping habits so, in turn, they can more accurately target their advertising. And then there are the likes of Amazon and Netflix, who use data analytics to predict or suggest what you might be interested in viewing or purchasing next.

What’s more? It seems the head-scratching grey-matter folks, such as academics, analysts, researchers, and the like, have yet to agree upon a definitive statement as to what Machine Learning actually is. Anyway, for me, this is where I take my soapbox and stand proudly to proclaim that AI is nothing more than clever programming and smart technology. You see, when you have a software program that has an adaptive set of processes, combined with experience captured through the data it has received, whether that’s previously or currently, then perhaps we can compare it to an “empathic” agent.

When is human intervention needed?

I mentioned last month that such software has an ability to “see” our world through data and, as such, from the software’s perspective, it can manifest a representation and an understanding of “its” world – something our software creates through data modelling, in turn, leveraging its experience with data. More so, the software or algorithm can then make empathic and educated decisions based upon what it understands presently and what it has “learned” in the past.

Now, deep learning, is not too different, albeit slightly different, as it’s regarded as a progressive evolution to machine learning. We can refer to it as “machine learning+” and, on reflection, it should have been named as such since both machine and deep learning are often used interchangeably. Nevertheless, there are some differences and most notable is whether or not human intervention is needed. For example, a machine learning algorithm might be capable of performing a task to an extent and may, at some point, become confused or offer a prediction that is inaccurate or, at least, wasn’t expected.

Deep learning uses artificial neural networks to mimic the ability to learn - just like the synaptic mechanics of the human brain.

Software or algorithms must remain adaptive

In this instance, human intervention is required to correct or possibly resolve the open issue. On the other hand, deep learning will work through, with the use of better algorithms and “training” datasets, which it has acquired over a period to systematically resolve any issues without the need for human intervention. Furthermore, deep learning also uses artificial neural networks (ANNs) as a mechanism to “learn” and understand. ANNs, in fact, mimic the human ability to learn, where patterns in the artificial neural network, that is, akin to the biological neural network of the human brain, are established linking routine patterns just like the synaptic mechanics of the human brain.  

Over a period of time, “neurons” will become established as routine or known behaviors, of sorts, to predict behaviors that have defined events and outcomes, although these networks remain adaptive to allow them to learn new things when new data is received, for example. However, most importantly, the algorithms must be sufficiently robust in nature to allow them to establish new neural pathways and patterns when they experience something new.

Developing advanced software and algorithm techniques

Anyway, back to the names, “machine and deep learning.” This does leave me wondering as to why there should be a distinction made between the two, as they model or behave moderately the same with some notable or minor differences. In short, this would explain why I consider this to be “machine learning+” for want of a better term. After all, we are just referring to better software or algorithms.  

As I mentioned earlier, both terms are subsets of artificial intelligence, where deep learning is a further subset of machine learning, but I’m a little lost as to why they have been separated into two seemingly unique methods of learning. Fundamentally, I’m confident that, over time, we will inevitably develop advanced and stronger software techniques that will enrich the “holistic” essence of a machine that’s capable of learning, vis-à-vis “machine learning.”

Until next time …

For me, it is important to make this distinction of “machine learning” irrespective of the software or algorithm techniques used to bestow its capability. As such, instead of creating two domains of “learning,” we should perhaps just leave it as one concept that is “machine learning” as a subset of artificial intelligence, where we offer a granularity versioning or revision set to the evolutionary advancement of machine learning and ultimately a distinction might be made based on what it’s ultimately designed to do. I would suggest that a taxonomy of classification is developed to more accurately portray ML functionality and its inherent characteristics and qualities, all captured through software!

Engati

Even with all the technology in the world, the human touch is still vital. Kickstart the customer journey with intelligent chatbots, but make it memorable with live chat.

Schedule your chatbot demo now!

Share
Share

Dean Anthony Gratton

Dean is a technology influencer, analyst and futurist.

He is also a columnist for Technically Speaking where he dispels the rumours, gossip and hype surrounding new technology.

He is a passionate thought leader in his field with a social reach of over 2.5M.

Dean continues to provide an authoritative published and vocal presence and has an unregulated passion for technology to include #AI #ML #IoT #IIoT #BigData #SmartHomes #SmartMeters #Energy #DigitalTransformation and much more.

Andy is the Co-Founder and CIO of SwissCognitive - The Global AI Hub. He’s also the President of the Swiss IT Leadership Forum.

Andy is a digital enterprise leader and is transforming business strategies keeping the best interests of shareholders, customers, and employees in mind.

Follow him for your daily dose of AI news and thoughts on using AI to improve your business.

Catch our interview with Andy on AI in daily life

Continue Reading